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REASONING WITH WORLDS AND TRUTH 
MAINTENANCE IN A KNOWLEDGE-BASED 
PROGRAMMING ENVIRONMENT 

In traditional knowledge-based system development environments, the 
fundamental representational building blocks are mechanisms such as 
frames, rules, and attached procedures. The KEE system has been extended 
to include both a context (worlds) system and a truth maintenance qstem. 

ROBERT E. FILMAN 

Broadly speaking, computers are information trans- 
ducers: They read data, manipulate the data in some 
computational process, and display the results. The 
mapping we create between the input data, the manip- 
ulation and output data, and the external world is part 
of what makes computers valuable. The payroll pro- 
gram that takes wage rates and hours worked, multi- 
plies and figures deductions, and prints the values for 
net paychecks is useful because the wage rates and 
hours worked, computations, and net checks corre- 
spond ‘to the real hours, rates, etc., of the company’s 
workers. Traditionally, computers have been limited to 
modeling only those parts of the world where regularity 
dominates exception. That is, because workers are paid 
the product of their wage rate and hours worked-less 
deductions computed by simple formulas and table 
lookups-it is straightforward to write a computer pro- 
gram that computes paychecks. Because a company has 
many workers who it repeatedly pays by the same algo- 
rithm, it is worthwhile for it to have such a program 
written. To the extent that the underlying world is 
more complex, the program required for the modeling 
becomes more complex, and takes (perhaps exponen- 
tially) more skill to design, more time to write, more 
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effort to debug, and more devotion to maintain. A pay 
system based, for example, on the complexity of task 
performed, the external demand for the objects pro- 
duced, predictions about future economic conditions, 
and the artistic quality of the work is beyond the reach 
of conventional programming technology. Dealing with 
that degree of complexity requires more sophisticated 
systems than are currently available. 

The goal of knowledge-based systems (KBS) technol- 
ogy is to greatly expand the horizon of “reasonable-to- 
build” applications. The use of KBS technology 
simplifies modeling a large class of complex s,ituations 
involving symbolic reasoning and eases the task of stat- 
ing complicated things about irregular domains. Never- 
theless, even this expressiveness would not be useful 
without the tools to make it accessible-inspection and 
modification mechanisms to reveal the state of the 
model, and input and display mechanisms to easily 
translate between computer and human-understanda- 
ble forms. Toward this end, several KBS development 
environments have been developed, both in research in- 
stitutions and commercially. These environments use 
technologies such as pattern-action rules (Emycin [26], 
OPS-5 [Z], ART@ [27], S-l@ [lo]), frames (Units [23], 
KL-ONE [l]), variants of procedural attachment (i.e., 
daemons and object-oriented programming) (ISmalltalk 
[9], Flavors [25]), and integrations of the above (Loops 
[24], KEEa [6]). Such environments provide not only 
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the internal representational structures of their chosen ploit these new facilities requires further research and 
paradigm, but also interface facilities that understand experimentation. This article presents some of our 
and can manipulate these structures. early experiments with the new system. 

Recently, we have extended the KEE environment to 
include both a truth mnintenance system (TMS) (based on 
de Kleer’s work on the assumption-based truth mainte- 
nance system (ATMS) [3]) and a context or worlds sys- 
tem [19]. We call these extensions KEEworlds@. A world 
represents a set of related facts-for example, a situa- 
tion, a simulation checkpoint, a belief set, or a hypo- 
thetical state of a problem solver. A world is character- 
ized by a set of assumptions. The TMS remembers the 
assumptions on which each deduced fact is based. A 
world sees a deduced fact if and only if the world’s 
assumptions are a superset of the assumptions that sup- 
port that deduction. 

The primary activity of a KEE system user is first 
constructing a model of an underlying domain and then 
building one or more reasoning components that ma- 
nipulate that model. Thus, KEE is a tool that enables 
model-based reasoning. In this article we develop several 
examples of reasoning with KEEworlds, all centered 
around a common domain of scheduling shipments. As 
truth maintenance may be unfamiliar to some readers, 
we provide a short overview and history of truth main- 
tenance in the accompanying sidebar. 

The integration of a conventional object-oriented rep- 
resentation environment with worlds and truth mainte- 
nance is a novel combination. It required modifying the 
system’s internal representation structures, and con- 
structing a new rule system to manipulate world and 
ATMS entities. Similarly, discovering how best to ex- 

AN OBJECT-CENTERED DOMAIN DESCRIPTION 
We illustrate our discussion of knowledge representa- 
tion and reasoning with examples from the problem of 
building tools to aid the dispatcher of the hypothetical 
Big Giant Trucking Company. Big Giant serves 24 cities 
in Indiana and Illinois (Figure 1 shows an area we call 
Mid. Continent) moving shipmenfs of various mate- 
rials over particular highways in certain trucks driven ty 
specified drivers. 

KEEworlds is a trademark of IntelliCorp. The dispatcher wants to devise a schedule-a collec- 
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An Overview of Truth Maintenance 

In general, reasoning is the process of deriving new knowl- 
edge from old. If the underlying knowledge never changes, if 
we never explore hypothetical spaces, and if our knowledge 
is free of internal contradictions, the accumulation of knowl- 
edge is straightforward: We just add the results of our rea- 
soning to our pile of knowledge. Unfortunately, few problems 
are so simple. We usually find ourselves reasoning under a 
set of assumptions that may be withdrawn or changed. 
Often the entire reasoning process is focused on identifying 
preferred assumption sets. Ideally, when the assumptions 
change, we would like to withdraw those conclusions that 
are no longer valid, retaining those that are still true. This 
requires attaching to derived facts justifications or dependen- 
cies, that is, reasons for belief in these facts. 

Historically, the need for dependencies first arose in the 
context of the frame problem [16]-the problem of determin- 
ing what has not changed over an event or series of events. 
For example, we imagine situation S, where a monkey is in a 
room with a red box located at position (x, y ). The action of 
the monkey, A, of pushing the box to (x’, y’) creates a new 
situation, S’. How is our computer system to know that the 
color of the box is still red in S’? It is not the case that the 
color of the box is constant over all actions. Instead, if A had 
been the action painting the box green, then the color of the 
box would be different in S’. Our system must somehow 
incorporate the knowledge that the action of moving an ob- 
ject does not change its color. 

Systems such as STRIPS [7] and PLANNER [l l] ap- 
proached the frame problem by associating with each action 
lists of facts that were added by the action and facts that 
were deleted by the action. The problem with this approach 
is that to be correct the operators that changed system state 
had to modify all facts that had been derived on the basis of 
the now-to-be-deleted facts. That is, if in state S, above, we 
had concluded that the box at (x, y) was under a bunch of 
bananas, and that action A was moving the box, we needed 
to withdraw this conclusion in S’. 

One of the first systems to associate dependencies with 
derivations was Stallman and Sussman’s system for circuit 
analysis, EL [22]. Their goal was to find those faulty assump 
tions responsible for producing contradictions. They intro- 
duced the idea of dependency-directed backtracking. Tradition- 
ally, many systems have relied on chronological backtrucking, 
that is, considering all the possibilities for the most recent 
choice before revising any earlier decision. Chronological 
backtracking has the advantage that it is simple to implement 
with a stack. 

We illustrate the disadvantages of chronological back- 
tracking with a variant on the monkey-and-bananas problem. 
In the traditional monkey-and-bananas problem, a monkey is 
in a room, and the room has a bunch of bananas hanging 
from the ceiling and a box on the floor. The monkey wants to 
get (and then eat) the bananas. To achieve this goal, the 
monkey must push the box under the bananas, climb the 
box, and grab the bananas. In our problem, our monkey 
comes into a room with several boxes and several bunches 
of hanging bananas. The monkey’s goal is once again to 

obtain a comestible bunch. The monkey proceeds ‘to select a 
bunch of bananas, select a box, push the box under the 
bananas, climb, and grab. But lo-the bananas are sour. The 
monkey has a failure. Chronologically backtracking, the mon- 
key reconsiders the last decision, the box selections. So the 
monkey picks another box, climbs down, pushes the first 
box away, pushes the new box under the same bunch of 
bananas, and so forth. Only after the monkey has exhausted 
all the boxes in the room does the chronologically backtrack- 
ing monkey reconsider the choice of which bunch of bananas 
to pursue. A monkey using dependency-directed backtrack- 
ing would notice that the sourness of the bananas (depended 
only on the bunch choice (independent of the box c:hoice), 
and would revise that choice instead. That is, in delmndency- 
directed backtracking, the choice to be revised is not simply 
the last choice made, but a choice that contributed to the 
failure. To be able to do this, we must keep the dependen- 
cies of derivations. (There are, of course, other salutary ef- 
fects from retaining dependencies for conclusions. ‘The most 
important of these is that we are keeping the information 
required to explain the derivation and validity of those con- 
clusions.) 

Doyle [5] and, independently, London [12] were ‘the first 
to recognize that the facilities for recording dependencies, 
dependency-directed backtracking, and “currently believing” 
particular assumptions could be incorporated into a system 
independent of an overarching reasoning mechanism. Doyle 
called his system a truth maintenance system or TMS (the 
term has stuck, though he currently favors the phrase reason 
maintenance system). In addition to dependencies, Doyle’s 
system incorporated the idea that particular assumptions 
could be in (currently believed) or out (not currently believed); 
a particular derivation would be valid, for example, if assump- 
tions X and y were in, but 2, out. In-ness and out-ness 
enable both modeling varying “current worlds” (worlds being 
assignments of in and out to assumptions), and basing be- 
liefs on the out-ness of facts (in the spirit of Planner’s 
THNOT (not found) [l 11). Issues in the implementation 
of TMSs arise in the algorithms for revising the beliefs of 
the system when assumptions go in and out. In general, 
algorithmic and semantic difficulties can ensue when 
revising beliefs that have (circularly) come to support 
themselves. 

TMSs have been a fertile field for artificial intelligence (Al) 
research, for example, the work of de Kleer et al. [4], 
McAllester [14], McDermott [17], and Martins and Shapiro 
[13]. In our work, we have been extending de Kleer’s as- 
sumption-based truth maintenance system (ATMS) 131 to 
include contextual mechanisms (worlds), nonmonotonicity 
(assumption retraction), and integration with an underlying 
frame system.’ 

’ In the first two respects, our system appears similar in behavior to the 
Viewoointsw facilitv of ART 1271. As little has been oublished about the 
alnorithms of that system, ho&&r. it is difficult to make detailed compari- 
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FIGURE 2. The trucks Hierarchy 

tion of trips (an assignment of a truck and a driver to a 
particular itinerary) such that all shipments are picked 
up at their origins and delivered to their destinations. 
The dispatcher’s job is complicated by the fact that he 
or she is working under a set of constraints-restrictions 
about what constitutes a legal schedule. These con- 
straints range from common sense, for example, “The 
driver of a trip has to be in the same city as the truck” 
and “You can’t put more on a truck than it can hold”; 
through the legalities of this particular domain, for ex- 
ample, “Union drivers can’t drive more than 11 hours a 
day” and “You need the right kind of license to drive 
the bigger trucks”; and on to the absurdities that char- 
acterize so much of the real world, for example, “Driver 
White is wanted by the police in Illinois and can’t be 
sent there.” Ideally, the dispatcher would like to optim- 
ize-to construct a near-minimal cost schedule-but in 
a highly constrained situation, is usually lucky just to 
find a feasible (legal) schedule. 

Although Big Giant is just a simple example devel- 
oped to illustrate the points of this article, it shares 
with real problems a complex texture of regularity 
punctured by exceptions. Such a combination of regu- 
larity and exception characterizes domains most appro- 
priate for knowledge-based techniques: The regularity 
of the domain enables us to actually build something, 
whereas the exceptions foil conventional programming 
technology. 

We represent the objects of the domain as units 
(frames) and arrange these units in a class hierarchy; 
thus, the class of trucks has subclasses big. trucks, 
medium. trucks, and small _ trucks. Individual 
trucks are members of these classes (Figure 2). For ex- 
ample, truck Piper is a member of the class of 
small. trucks. Both classes and members are repre- 
sented as units; a given unit can represent both a class 
and a member of a class. 

Relationships between objects and values are repre- 
sented as slots in the units that represent the objects. 
There are two kinds of slots: member slots and own slots. 
An own slot expresses a relationship involving its unit 
as an individual. Thus, the statement that the value of 
the own slot location in unit Piper is Gary is the 
assertion that the location of Piper is Gary. Member 
slots occur only in class units. A member slot expresses 
a relationship involving the members of the class. The 

bm s1or: OlSTANCE *om EXAMPLE.TRIP 
vo/ues: 360 

mn slot: ORWER rrom EXAMPLE.TRIP 
va,ues: GRAY 

hm slot: ORWER.COST from EXAMPLE.TRIP 
vo,ues: UNKNOWN 

,wn slot: oRI”ER.COST.PER.HO”R from EXAMPLE.TRIP 
vc7b.le*: UNKNOWN 

,wn slot: o”R*TION from EXAMPLE.TRIP 
Values: UNKNOWN 

mn 51ot: ITINERARY from EXM.wl.E.TRIP 
Values: ((INDIANAPOLIS NIL ORIGIN) (SEYMOUR COMPUTERS ON) (THAYER COMPUTERS OFF: 

3rvn s1ot: MAX.“OL”ME lrom TRIPS 
Vohos: UNKNOWN 

3wn dot: MAX.WEIGHT from TRlPS 
Yaluor: UNKNOWN 

3wn s1or: ORlOIN from EXAMPLE.TRIP 
“alms: lNOlANAPOL,S 

3wn sIoT: SHIPMENTS.HANOLEO lrom EXAMPLE 
Values: COMPUTERS 

3wn riot: TOTAL.COST from EYAMPLE.TRW’ 
Vahes: UNKNOWN 

3wn slot: TRUCK Tram EXAMPLE.TRIP 
Vahes: PIPER 

3wn slot: TR”CK.COST flom EXAMPLE.TRIP 
Vclues: UNKNOWN 
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statement that the value of the member slot location 
in unit trucks is Indianapolis is (to a first approx- 
imat:ion) the assertion that the location of any member 
of the class of trucks defaults to Indianapolis. 
.&zcets are annotations of slots to express additional in- 
formation about that slot. The facets of member slots 
inherit along with the slot itself. Typical facets are 
inheritance role (the rule used to combine values from 
the unit’s parents with the unit’s local values), 
valueclass (type), and min. cardinality 
and max _ cardinality (restrictions on the number 
of values a slot can have). 

KEE provides a number of standard inheritance roles, 
such as union (the value in an inherited slot is to be the 
union of the local values and the inherited values), 
override.values (if there is a local value in the slot, it is 
the value of the slot; otherwise, the values inherited 
from some parent are used), and method (a mechanism 
for assembling functions from fragments, similar to the 
mix-ins of Flavors [25]). Users can describe additional 
inheritance roles of their own. Although KEE provides 
a variety of inheritance mechanisms (and allows user- 
defined extensions to this set), in these examples we 
use inheritance only to specify locally overridable de- 
fault values. 

Valueclass information is used to deduce type viola- 
tions, to determine the semantic classes for values, to 
coerce ambiguous notation to the appropriate data type, 
and to organize particular interface mechanisms. Cardi- 
nality information is similarly used to detect contradic- 
tions. The behavior of the system on detecting a value- 
class or cardinality violation (coercing the value to 
the new class, interrogating the user, or noticing a 
contradiction) is controlled by the setting of a global 
switch. 

Since the task of the dispatcher is to create trips, it 
seems useful to reify the concept of a trip. We have a 
class of trips, and members of that class that are 
partic:ular trips. Conceptually, the dispatcher believes 
that a trip has been composed when he or she has told 
a particular driver to drive around in a specific truck 
doing certain things. We represent these components of 
a trip as slots in the trip unit: driver, truck, and 
itinerary. We represent an itinerary as a sequence 
of actions, where each action is a triple: a city for the 
action to take place in, an object for the action (one of 
the shipments or nil), and the particular action to be 
taken (originating in that city, taking that shipment on 
or off the truck, or just visiting the city). This represen- 
tation. is strong enough to specify the route of a trip to 
the individual highway segment level, but flexible 
enough to allow us the more minimal specification of 
only the key actions of the trip, permitting the driver to 
take the usual (shortest) route between any two cities. 
From the specification of a driver, truck, and itinerary 
for a trip (and the weather), it is possible to derive other 
facts about a trip-for example, how long it takes and 
how much it costs. We also store such derived informa- 
tion in slots of the trip. Figure 3 shows the information 
in trip Example. trip partway through a problem- 
solving process. 

WORLDS AND TRUTH MAINTENANCE 
In general, problem solving is the discovery of some set 
of beliefs-be they the values of some variables, a com- 
plex data structure, or a collection of formulas in a 
theorem prover. In systems that search, different sets of 
beliefs are believed at different points in the problem- 
solving process. That is, we may start by believing X, 
conclude Y, and then switch context to believing Z. On 
the other hand, the entire search process proceeds 
against a background of a fixed set of facts--a model 
of the unchanging underlying world. Thus, if our 
task is to generate itineraries through the dies of 
Mid. Continent, we have at various points beliefs 
about partially assembled itineraries, and the costs and 
consequences of these itineraries. On the other hand, 
facts such as the connectivity network of cities and 
highways, the capacity of trucks, and the 1ic:ense class 
of drivers are constant throughout the problem-solving 
process. These background facts are true in every con- 
text. (Of course, if our problem solving included the 
possibility of improving drivers’ licenses or adding 
routes to our territory, these would cease to be facts in 
the background.) The system represents (mast) such 
background facts more economically, without incurring 
the space and time costs of truth maintenance.’ 

The ATMS is primarily concerned with those expres- 
sions that have different values in different scontexts- 
the fodder of search. The ATMS records the justifica- 
tions for beliefs, propagates justifications on the basis of 
new derivations, and ensures that exactly the appropri- 
ate derived facts are visible at any time. To iaccomplish 
this, the ATMS incorporates three basic concepts: facts 

(also called propositions or nodes), assumptions, and 
jusfificafions.3 

Formally, the ATMS manipulates assumptions and 
propositions. Each assumption corresponds to a primi- 
tive decision or choice. We use assumptions primarily 
either to hypothesize the existence of some context or 
to believe some particular fact. Each proposition has an 
associated datum, its content for the users of the ATMS. 
The datum, however, is not itself used by the ATMS 
operations. (Thus, each own-slot value and unstruc- 
tured fact that has been noticed by the ATMS is the 
datum for its own unique proposition. Backg,round facts 
economize by going without propositions.) We use the 
notation p to represent the proposition associated with 
fact P, and the notation p to represent the assumption 
of P-the choice of believing p. 

Propositions may be justified in terms of assumptions 
or other propositions. Justifying proposition ;z by X and 

ZBackground facts are not to be confused with defaults-defaults are a mech- 
anism for easily expressing a bulk of information and exceptions for that 
information. In general. a particular default may or may not be true in the 
background. 

3There are various ways that information can be stored in the KEE system: as 
the values of own and member slots and facets, in the inheritance links 
between units, and as unstructured facts (arbitrary data structures). The 
ATMS maintains the truth of onlv the values of own slots and unstructured 
facts. We have not implemented iruth maintenance on statem’ants such as 
(Cannon-ball 1s in class large.trucks) (class membership) and 
(The transmission of all trucks is automatic) (member-slot 
values). Some of our recent work has produced Opus, a KEE-like system 
where all facts are accessible to the ATMS 181. 
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&!, (X, ‘&/I- 2) is the assertion that, whenever X and Yare 
believed, Zis to be believed, too. 

Viewing the justification of a proposition by a set of 
assumptions and propositions as a single proof step, we 
see that the justification structures for a particular 
proposition form proof trees for that proposition. An 
environment is the set of assumptions obtained by trans- 
versing such a justification structure back to a well- 
founded set of assumptions. The label of a proposition is 
the set of minimal environments that support that prop- 
osition. The label can be seen as a summary of the 
necessary assumptions required for believing the asso- 
ciated datum. The primary operation in the ATMS is 
the addition of a justification to a proposition. This 
causes the ATMS to update the labels of all affected 
propositions. That is, if we discover another set of as- 
sumptions that supports the belief in proposition /? we 
consider for each proposition directly justified by /3 
whether that set of assumptions is part of a new mini- 
mal support for it. This process ensures the label of a 
proposition always reflects every minimal set of as- 
sumptions that imply that proposition. 

It is convenient to identify “assuming a datum in a 
context” with the proposition structure of that datum 
and with the datum itself. Data are distinguished from 
propositions because propositions include more infor- 
mation-proofs of the datum and summaries of the sup- 
porting assumptions of those proofs. Assumptions are 
distinguished from propositions because (1) propositions 
can acquire other justifications than just the decision to 
assume them, and (2) assumptions are used for the sys- 
tem’s context mechanism. On the other hand, it is con- 

1 

The truck.cost of 
some.trip is 452 

venient in most situations to think of facts as identical 
with their propositions (and, occasionally, with the as- 
sumption of those facts). 

Let us consider an example in greater detail. Suppose 
we come to justify the fact 

The truck.cost of some.trip is 452 (4 

on the basis of the facts 

The truck of some.trip is Traveler 

and 

The itinerary of some.trip is.... K7 

This belief might arise, for example, from the applica- 
tion of a rule about computing truck costs. In any con- 
text where we come to believe &and c’, we also believe 
.,u. If our beliefs in 8 and Care based on assumptions kj 
and ?, then the structure for the proposition whose 
datum is A points to the justification structures &and - 
C, and the label, ((& C)j (Figure 4). 

We might also come to justify J on the basis of facts 
e and 

The truck of some.trip is Queen.Bee, (31 

.ZJ similarly supported by assumption .!%. The label of A 
would then be (J& 21, (I?‘, s}). Our justification struc- 
ture grows to that of Figure 5. If we discover a justifica- 
tion of JJ’ that traces back to assumptions 8, 2, and ?, 
this new justification is not included in the label of A, 
as it is subsumed by the environment {E, e). 

The ATMS treats the fact false specially. A set of 
assumptions is inconsistent (nogood) if we can derive 

7 - B 
some.trip is 

Traveler 

0 

The itinerary of 
some.trip is ._. 

0 
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The truck.cost of 
some.trip is 452 

The truck of 
some.trip is 

Traveler 

The itinerary of 
some.trip is . . . 

a 

The truck of 
some.trip is 

Queen.Bee 

a 

FIGURE 5. The Proposition Structure of A with a Second Justification 

false from it. Traditionally, inference is the process of 
extending a set of beliefs by applying inference proce- 
dures to these beliefs. The use of the classical proposi- 
tional logic illustrates this point: If I believe (Y and I 
believe (Y > /3, then I am entitled to believe p. If that 
process produces a contradiction, one of our original 
assumptions must itself be wrong. The ATMS relies on 
this principle. It marks as inconsistent all sets of as- 
sumptions from which contradictions have been de- 
rived and removes derivations based on such assump- 
tion sets from its working memory. In the KEE system, 
contradictions can be created not only by explicitly de- 
riving false, but also by conclusion of both LY and 

(not CY), and by cardinality and valueclass violations. For 
simplicity’s sake, however, in most of our examples we 
induce contradictions only by explicitly deriving 
false. 

Using the ATMS as a foundation, we have built a 
context mechanism, much in the spirit of the contexts 
of QA4 [Zl] and Conniver [la]. We call each context a 
world. Worlds can be created interactively through the 
user interface, by the actions of the rule system, or 
programmatically. Figure 6 shows the KEEworlds 
Browser, a graphical representation of the worlds ex- 
tant at any time. The browser shows a single world, 
start. When creating a world, the user can specify a 
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parent world or worlds. The newly created world has, 
as a default, all the assumptions (and hence, derived 
facts) of its parent worlds. 

A world is characterized by a set of assumptions- 
both the assumptions of the existence of that world and 
its ancestor worlds, and the assumptions of facts explic- 
itly asserted and deleted in that world. Testing the con- 
text-relative belief in a proposition is straightforward: If 
the assumptions of a world are a superset of any of the 
environments in the label of the proposition, that prop- 
osition is believed in that world. The system treats as 
believed in a world not only those assumptions explic- 
itly asserted into that world, but also any fact that has a 
derivation based on those assumptions. Thus, if in 
world \k we believe Band C, we also believe A, because 
C has been shown to be a consequence of A and & This 

FIGURE 6. KEEworids Browser of Start 

COMPUTE.TOTAL.COST 
while 

(the truck.cost of ?t is ?vc) 
(the driver.cost of ?t is ?dc) 

believe 
(the total.cost of ?t is (+ ?dc ?vc)) 

COHPUTE.TRUCK.COST 
while 

(the cost.per.mile of (the truck of ?t) 
is ?x) 

(the distance of ?t is ?d) 
believe . 

(the truck.cost of ?t is (* ?x ?d)) 
COMPUTE.DRIVER.COST 

while 
(the driver.cost.per.hour of ?t is ?w) 
(the duration of ?t is ?d) 

believe 
(the driver.cost of ?t is (* ?d ?w)) 

COMPUTE.DRIVER.COST.PER.HOUR 
while 

(the waqe.rate of (the driver of ?t) 
is ?w) 

believe 
(the driver.cost.per.hour of ?t is ?w) 

COHPUTE.DURATION 
while 

(the itineary of ?t is ?i) 
(the truck of ?t is ?v) 
(the weather of mid.continent is ?w) 

believe 
(the duration of ?t is 

(compute.duration ?i ?v ?w)) 

FlGURE7. Cost.Computation.Rules 

belief carries over into this world even though the jus- 
tification LJ, C k A may have been made when the sys- 
tem was “focused” on some other world, perhaps even 
before q was created. We do not ha,ve to rederive A, 
because the ATMS preserves this derivation. 

Rules and Justifications 
We have spoken of the system creating justifications. In 
most applications, the primary source of justifications is 
the instantiation of deduction rules (although one can 
also explicitly add justifications). The KEE system has 
two kinds of rules: deduction rules and action rules. De- 
duction rules express the theories of a particular do- 
main representation-truths believed in every world. 
Action rules create contexts and change the assump- 
tions of particular contexts4 

When a deduction rule is instantiated, a justification 
is created. The justifications ensure that, whenever 
facts matching the premise of the rule are believed, the 
system believes the corresponding conclusions. Thus, if 
a deduction rule is invoked that concludes X, 74 I- 2, we 
do not necessarily know 2 in any specific world. ln- 
stead, the ATMS has built a structure, the justification, 
that enables the system to recognize that, if we ever 
come to believe both X and 74 in a world, we also be- 
lieve Zin that world. Figure 7 shows the deduction 
rules for computing the cost of trips in our example 
domain. 

Truth Maintenance across Worlds 
The interaction of truth maintenance with worlds may 
seem clearer with an example. In this section we show 
how facts computed in one world are visible in other 
worlds that share the appropriate assumptions. We be- 
gin by asserting four facts in world start: 

The driver of example.trip is Gray; (4 

The truck of example.trip is Piper: (3) 

The itinerary 
of example.trip is 

'((Indianapolis nil origin) 
(Seymour computers on) 
(Thayer computers off)); 

(G1 

The weather of Mid.Continent is snow. (.A/) 

‘The system allows any rule to be used both for reacting to assertions (for- 
ward chaining] and for answering queries (backward chaining). Rules in KEE 
are written in KEE’s rule language, which itself is based on the extensible 
query and assertion language TellAndAske. In cmr examples. the clauses of 
rules are either the assertion or deletion of facts, the evaluation in the under- 
lying Lisp system of some expression, or the unification of a variable with an 
underlying evaluation. Unmarked facts are interpreted as assertions, and un- 
unified Lisp expressions as Boolean tests. For the examples used in this arti- 
cle, the reader need only understand that a statement of the form (the 
location of Cannonball is Thayer)refers to one value of the loca- 
tlon slot in unit Cannonball as Thayer. and that a statement of the form 
(Cannonball is in class trucks) means that Cannonball is a 
member of some class in the transitive closure of the subclass relation on 
trucks. TellAndAskm allows embedding of subexpressions (e.g., (the 
transmission of (the truck of trip.1) is automatlc))and 
unifies variables (“?” symbols). 

- 
T”TellAndAsk is a trademark of IntelliCorp. 
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‘Thus, world start includes, in its characteristic as- 
sumption set, assumptions for each of (C)-(_/d). Let us 
call these assumptions 2, 3, <, and .& 

When we query the system to determine the total 
. coet of example _ trip in world start (using the 
cost. computation. rules), it runs the rules, de- 
ducing the fact 

‘rhe total. cost 
of example.trip is 308.475. (4 

At this point, proposition 4 includes in its label the 
environment 12, 3, r$ 3). As these assumptions are a 
subset of the characteristic assumptions of world 
start, fact 9 is believed in start. Figure 8 shows a 
display of the unit example. trip relative to world 
start after this query. Since in deriving this value we 
derived several other intermediate values (such as the 
truck. - and driver. costs), the unit display also 
shows these values. Correspondingly, these facts have 
justification structures including subsets of (2, 2, <, 2). 
(This display is a condensation (eliminating facets) of 
the display obtained by selecting Display Unit from 
the browser menu. In general, the user interface allows 
the user to browse and edit the knowledge base relative 
to worlds.) 

Because the ATMS creates justification structures for 
derived facts, the justifications for beliefs are available 
to system and user programs. One such facility is in- 

voked by selecting explain from the browser menu. 
Figure 9 shows the result of this selection-the explana- 
tion graph (proof tree) for the value of the total. cost 
of example. trip. 

We can now create another world, other _ world, 
asserting the same four facts (C)-(X) in it. Thus, the 
characteristic assumptions of other. world include 
(2, 2, <, Jid]; other. world sees any fact (such as 9) 
that is justified by this set. Figure 10 shows the browser 
and facts of other _ world. If we remove, say, assump- 
tion i; from the characteristic set of other. world, the 
belief in the consequences of that deduction in 
other. world is withdrawn. In Figure 11 we see the 
beliefs of other. world after we have retracted fact & 
from other. world. The beliefs dependeni. on the 
driver being Gray (such as the driver. cost and 
total. cost of example _ trip) are no longer pres- 
ent. Beliefs that do not depend on the drive:r, however, 
(such as the truck. cost of example. trip) are still 
there. 

Contradictory Worlds 
If the ATMS has been given a derivation for false 
that is justified by assumptions believed in (a particular 
world, then that world is contradictory and is consid- 
ered nogood. Figure 12 shows the browser after we 
have asserted a second truck for example. trip in 
other. world. Since the maximum cardinality of the 

3wn dot: OlSTANCE from EXAMPLE.TRIP 
vo,ues: 360 

3wn slot: ORWER from EXAMPLE.TRIP 
“~1”es: GRAY 

3wn slot: ORI”ER.COST from EX*MPLE.TRIP 
values: 114.07498 

3wn slor: DRI”ER.COST.PER.HO”R From EX*MPLE.TRIP 
“alnes: 13.5 

Own dot: OURATlON from EX*MPLE.TRIP 
“clues: 8.449999 

Own slot: ,TlNER*RY from EX*MPLE.TRIP 
Ya,ucs: ((INOIANAPOLIS NIL ORlG!N) (SEYMOUR COMPUTERS ON) (THAYER COMPUTERS OFF): 

own s1or: M*X.“OL”ME from TRIPS 
Values: UNKNOWN 

Own sht: ORIGIN frmn EX*MPLE.TRIP 
vokles: INoI*N*POLIS 

Own slot. SHIPMENTS.H*NOLEO from EX*MPLE.TRIP 
vsluer. COMPUTERS 

Own dot: TOTALZOST from EX*MPLE.TRIP 
values: 308.41498 

Own slat: TRUCK from EX*MPLE.TRIP 
“clues: PIPER 

Own dot: TR”CK:.COST from EX*MPLE.TRIP 
Values: 194.4000, 

FlGURE8. Example-Trip in Start afterQuery 
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FlGUREg. ExplanationoftheTotal.Costof Example.Trip 

truck slot is 1 and we have asserted two different 

f7HE WEATHER OF M,O.CONT,NENT IS SNOW, 
iTHE ORlVER OF EXAMPLE.TRIP IS GRAY) ’ 
(THE TRUCK OF EXAMPLE.TRIP IS PIPER, 
~THE ITINERARY OF EXAMPLE.TRIP IS ((#(Unit: INOIANAPOLIS SIGG~ANTI NIL ORIGIN) 
(#[Unit: SEYMOUR BIGGIANT] #[Unit: COMPUTERS BIGGIANT] ON) (#[Unit: THAYER 
BIGGIANT] #[Unit: COMPUTERS BIGGIANT] OFF))) 

(THE DURATION OF EXAMPLE.TRIP IS 8.449999) 
(THE ORIVER.COST OF EXAMPLE.TRIP IS 114.07498) 
(THE TOTAL.COST OF EXAMPLE.TRIP IS 308.47498) 
(IHE DRI”ER.COST.PER.HOU9 OF EXAMPLE.TR,P IS 13.5) 
(THE TRUCK.COST OF EXAMPLE.TRIP IS 194.40001) 
(THE ORIGIN OF EXAMPLE.TRIP IS INOIANAPGLIS) 
(A SHIPMENTS.HANOLEO GF EXAMPLE.TR,P IS COMPUTERS, 

II. (THE DISTANCE OF EXAMPLE.TRIP IS 360) 

FIGURE 10. The Beliefs of Other. War Id 

(THE WEATHER OF MIO.CONTINENT IS SNOW) 
(THE TRUCK OF EXAMPLE.TRIP IS PIPER) 
(THE ITINERARY OF EXAMPLE.TRIP IS ((#[Unir: INDIANAPOLIS BIGGIANT] NIL ORIGIN) 
(#[Unit: SEYMOUR BIGGIANT] #[Unit: COMPUTERS BIGGIANT] ON) (#[Unit: THAYER 
BIGGIANT] #[Unit: COMPUTERS BIGGIANT] OFF))) 

(THE OURATION OF EXAMPLE.TRIP IS 8.449999) 
(THE TRUCK.COST OF EXAMPLE.TRIP IS 194.40001) 
(T”E ORIGIN OF EXAMPLE.TRIP IS INDIANAPOLIS) 
(A SHIPMENTS.HANOLEO OF EXAMPLE.TRIP IS COMPUTERS) 
(T”E DISTANCE OF EXAMPLE.TRIP IS 360) 

FIGURE 11. The Beliefs of Other. war Id after Retracting the 
Driver 

trucks for example. trip, we have a contradiction, 
and other. world is nogood. Nogood worlds appear in 
the browser with solid boxes in their centers. 

When the ATMS detects a particular set of assump- 
tions is mutually inconsistent, it propagates that infor- 
mation throughout the justification structure. This can 
result in some worlds becoming nogood. The rule sys- 
tem ignores nogood worlds in choosing rules to apply. 
We can exploit this behavior with rules that produce 
contradictions (e.g., by deducing f a 1 se) in the worlds 
that violate domain constraints-that are logically in- 
consistent, undesirable, or just plain unlikely to occur 
in the modeled domain. Thus, deductions of contradic- 
tions can be used as a tool for controlling the reasoning 
process. 

Constraints 
We express the domain-specific constraints as deduc- 
tion rules whose conclusion is false. For example, the 
dispatcher errs in assigning driver d to truck v, when d 
and v are in different cities. We express this constraint 
with the following rule: 

DRIVER.AND.TRUCK. 
MUST.BE.IN.SAME.CITY 

while 
(the location 

of (the driver of ?t) is ?dl) 
(the location 

of (the truck of ?t) is ?vl) 
(not (equal ?dl ?vl)) 

believe 
false. 
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FIGURE 12. Browser with Other. war Id Nogood 

If we run this rule in a world where Gray (located in 
Gary) and Queen. Bee (located in Indianapolis) 
are the driver and truck, respectively, of exam- 
pie. trip, we deduce false, making the world 
nogood. The examples in this article were run with 
abou.t a dozen constraint rules.5 

WORLD STRUCTURES 
The dispatcher is faced with a difficult problem: satisfy- 
ing an irregular set of constraints while working in a 
large combinatorial space. This problem has aspects of 
“interpretation construction” (i.e., the assignment of 
values to a few variables) in the selection of drivers, 
trucks, and itineraries for trips. Itineraries are them- 
selves complex objects, however, not amenable to 
simple optimization. In the next three sections, we de- 
scribe a series of tools for the dispatcher: first, the dis- 
patcher’s advice taker, a manual approach that illustrates 
the u.se of the system to record the dispatcher’s deci- 
sions and check them for constraint violations; second, 
a dispufcher’s apprentice that, using the rule system, 
demonstrates a division of work-giving the dispatcher 
the hard problem of determining itineraries, and allow- 
ing the system to complete the more mechanical details 
of truck and driver assignments; and, third, a disputch- 
er’s replucement that programmatically solves the entire 
problem. Our intent is to illustrate the interaction be- 
tween problem solving, the ATM& and the worlds sys- 
tem. Clearly, we are not presenting an interface for a 
dispatcher so much as the tools a system builder could 
use in constructing a problem solver for the dispatcher. 

Problem solving is typically an exploratory, incre- 
mental process. That is, one starts with a set of beliefs 
about. the world and recursively considers alternative 
choices that modify those beliefs. Usually, the modifi- 
cations to a set of beliefs are incremental: By and large, 
we retain most of the original assumptions of the initial 
state, adding or deleting only a few at each step. Thus, 
the dispatcher who starts with the problem of complet- 
ing an empty trip may choose among trucks, drivers, 
and iiineraries to get to the next problem state; once in 
that state, the dispatcher may modify the itinerary or 
focus on an earlier point in the problem-solving proc- 
ess. KEEworlds allows us to reflect the structure of the 
search space in the structure of a worlds graph. That is, 
one can model alternatives or changes to a particular 
world by creating child worlds. By default, these worlds 

‘For the rules. the data, and a formal statement of the problem, write to the 
author. 

inherit the assumptions (and, therefore, the derived 
facts) of their parents. The user, however, is also al- 
lowed to change (add and delete) assumptions in the 
children (often in the creation process). Thus, we might 
model the action in world 9, of sending Queen. Bee 
from Indianapolis to New. Harmony by creating 
\k,, a child world of \k,; and, in \k,, changing 
Queen. Bee’s location to New. Harmony. lf (as an as- 
sumption) the driver of Queen. Bee in \k, is Green, 
Queen. Bee’s driver will still be Green in $J,. 

Similarly, a common problem-solving tac:tic is to 
break a problem into subproblems, solve the subprob- 
lems independently, and finally merge the subproblem 
solutions (if compatible) into a global solution. We 
model this structure by placing the original problem in 
a world, q’, and then creating children worlds, \k,,, . . . , 
9,“, each of which encodes one of the subproblems. 
When we have a set of descendant worlds, \kd,, . . . , 
qd,,,, that solve the subproblems, we try to merge them 
into a solution world. In the dispatcher’s advice taker, 
we model the solution of the entire problem of sched- 
ule creation by breaking the problem into the tasks of 
defining a trip for each itinerary in its own separate 
world, and then merging these worlds (building a child 
world with these worlds as parents) when all tasks 
have been solved. This merge can fail even though 
each subproblem solution is itself consistent. For exam- 
ple, two itineraries can in themselves be consistent, but 
together be inconsistent because they use the same 
driver. We model dead ends and failures as nogood 
worlds. 

Formally, the worlds exist in a directed, acyclic 
graph over the “parent-child” relation. Loosely, the as- 
sumptions true in a particular world, 9, are those that 
have been explicitly added at 3, and those assumptions 
in the parents of Q that have not been explicitly de- 
leted in q.6 

THE DISPATCHER’S ADVICE TAKER 
The dispatcher’s advice taker leaves the decisions 
about trip composition to the dispatcher, but checks 
those decisions for consistency with the constraints of 
the problem space. That is, the dispatcher decides who 
to assign to what, and the advice taker checks to see if 
that assignment breaks any of the dispatching rules. 
(Thus, the advice taker acts in the spirit of McCarthy’s 
Advice Taker [IS]-able to converse about the domain 
and verify assertions, but not able to make decisions.) 
As described above, we express constraints as deduc- 
tion rules whose conclusion is false. 

A typical interaction with the dispatcher’s advice 
taker might go as follows: We have three itineraries, 
iterl, iter,, and iteq, for which we seek to make simul- 
taneous truck and driver assignments: 

‘This descriotion is a simolification of the true situation. where a more 
elaborate conflict-resolution strategy is used when a particular assumption 
has been both added and deleted in different ancestors. For the details of the 
conflict-resolution strategy, the reader is referred to Morris and Nado’s article 

1191. 

392 Communications of the ACM April 1988 Volume 31 Number 4 



Articles 

iter,= ((Indianapolis nil origin) 
(Seymour computers on) 
(Thayer computers off)); 

iterz = ((Garynilorigin) 
(La.Harpe toys on) 
(Viola carpet on) 
(Oregon toys off) 
(Cook carpet off)); 

iter, = ((Indianapolis nil origin) 
(Kokomo refrigerators on) 
(Warsaw refrigerators off) 
(Roselawn bicycles on) 
(Gary typewriters on) 
(Attica typewriters off) 
(Bloomington bicycles off)). 

We create a world, origin, and describe the 
weather of Mid.Continentas fair inthatworld. 
We then create three child worlds of origin-worlds 
one, two, and three-making trips trip. 1, trip. 2, 
and trip . 3 have itineraries of iter, , iterz, and iter3, 
respectively in those worlds (Figure 13). Effectively, we 
have broken the problem of finding compatible drivers 
and trucks for these trips into the subproblems of find- 

ing a driver and truck for each trip. We represent par- 
tially completed solutions to these problems in worlds. 
When each subproblem is completely solved, we merge 
the solutions to see if they are mutually consistent. 

We try assigning Gray to trip. 1 by creating 
Gray/one, a child world of one, asserting “the 
driver of trip.1 is Gray" inthatworld and 
running the constraint rules in the new world. These 
rules render that world nogood. Examination of the ex- 
planation reveals that Gray, based in Gary, is unsuita- 
ble as a driver for a trip that starts in Indianapolis 
(Figure 14). Abandoning that world, we build 
Green/one and Queen. Bee/Green/one, where 
Greendrives Queen.Beeontrip.l.Running the 
constraint rules in these worlds shows them free of 
contradictions (Figure 15). We continue in a similar 
fashion, finding a place for Gray driving Piper on 
trip. 2, and for White driving Queen. Bee on 
trip. 3. In Figure 16 we see that an attempt to merge 
the three leaf worlds has failed because we have 
assigned the same truck (Queen. Bee) to two different 
trips. We correct this with a new truck for trip. 1, 
leading to a successful merge (Figure 17). This world 
cumulates the facts of its parents to form a solution. 

FIGURE 13. Worlds One, Two, and Three 

FIGURE 14. Gray Should Not Drive Trip . 1 
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FIGURE 15. After Assignment to or ip . 1 

FIGURE 16. Failure of Merge. a 

Modifying the Knowledge Base 
Because we are in a dynamic, symbolic, and interactive 
environment, it is straightforward to modify the repre- 
sentation structures to reflect new concepts and con- 
straints. If, for example, we wish to introduce the idea 
that (1) trucks have transmissions that are typically 
manual, (2) Piper has an automatic transmission, and 
(3) Driver Gray refuses to drive any truck with an auto- 
matic transmission, we could 

(1) create member slot transmission in class unit 
trucks, giving it value manual: 

(2) assert (the transmission of Piper is 
automatic); and 

(3) create another member of the class of constraint 
rules whose external form is as follows: 

while 
(the driver of ?t is Gray) 
(the transmission of 

(the truck of ?t) is automatic) 
believe 

false. 

Running the constraint rules now makes world 
merge. b nogood. 

This description of the dispatcher’s advice taker is 
interesting not as an interface one would actually want 
to provide to a working dispatcher, but because it illus- 
trates parent and child relationships between worlds, 
and shows the use of the world system to reflect prob- 
lem partitioning and recombination. Worlds express 
problem-solving state; that state can be used for things 
such as segmenting knowledge, checkpointing changes, 
and preserving search state at the discretion of the 
system developer. 

THE DISPATCHER’S ASSISTANT 
AND THE RULE SYSTEM 
Most problems require more action on the part of the 
system than simple state preservation and (constraint 
checking. That is, we usually want the computer to 
actually solve something, not merely represent it. KEE 
provides several different mechanisms for problem 
solving, such as active values (daemons), methods 
(object-oriented programming), and conven.tional pro- 
gramming. One such mechanism is the rule system. We 
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FIGURE 17. Successful Merge 

have already seen examples of deduction rules-decla- 
rative expressions of universal truths. Deduction rules 
create justifications for facts; the ATMS ensures that 
worlds find those facts that are true in them. Action 
rules cause the system to change its view of the state of 
some world. That is, like the programmatic assignment 
of a value to a variable, action rules change the state of 
the system.7 

The two kinds of action rules are same-world action 
rules and new-world action rules. As the name suggests, 
same-world rules run in a particular world; they make 
changes to (additions to and deletions from) the beliefs 
(characteristic assumptions) of that world. For a same- 
world rule to run in a world, all the premises of the 
rule must be true in that world. New-world rules create 
a new world. This world can have multiple parents. 
That is, the rule system searches for a set of compatible 
parent worlds where the facts have been added that 
satisfy the premises of the rule. For each such set, it 
builds a world that has that set as its parents. That new 
world inherits all the assumptions (and therefore de- 
ductions) of its parents. The changes implied by the 
action part of the rule then take place in the new 
world. Syntactically, new-world rules include the key- 
wordin.new.world(orin.new.and.world)toin- 
dicate new-world creation. We distinguish action rules 
by the use of the keywords if and then, in place of 
the deduction rule’s while and believe. 

We trust the conclusions of the ATMS because the 
ATMS implements a simple monotonic propositional 
logic, and theorems about that logic assure us that sub- 
sumption and elimination of contradictory derivations 

‘The deduction/action rule division roughly corresponds to the traditional 
dichotomy in AI between declarative and procedural knowledge [28]. Often in 
AI the use of rules as facts is jumbled with their procedural interpretation. 
Deduction rules express universal truths and can be understood indepen- 
dently of their context. Action rules are, in many ways, like the procedures of 
a program. Independently understanding their behavior can be as difficult as 
understanding the import of an isolated program statement, separated from its 
programming context. Recognizing this difference between these two varieties 
of rules clarifies the issue of why rule-based systems can seem both straight- 
forward to understand and more complicated than ordinary programming 
languages. 

are valid operations. To preserve this clean semantics, 
the premises of deduction rules must be either facts 
known to the ATMS or state-independent Lisp compu- 
tations. Action rules express programmatic change, and 
we make no pretense of expressing a declarative se- 
mantics of programs. We can therefore be more liberal 
about premises for action rules, allowing operators such 
as THNOT, quantified subexpressions, mixed forward 
and backward chaining, and reference to non-ATMS- 
facts (such as class membership and member slots). 

The ability of a new-world action rule to gather 
clauses from different worlds in creating a new child 
world can make it difficult to develop particular world 
topologies. It is often the case that the children of a 
world are meant as mutually exclusive alternatives. 
Such worlds (and their descendants) should never 
merge. To simplify expressing this idea, the system pro- 
vides exclusion sets: sets of incompatible child worlds. 
Each world can have one or more exclusion sets. Two 
worlds in an exclusion set are treated as mutually con- 
tradictory and cannot share descendants. Exclusion sets 
can be created through the user interface, programmat- 
ically, or by the rule system. As a default, if world \E,, a 
child of world \k,, was created by the rule system, then 
\k, is in \k,‘s default exclusion set. It will be excluded 
from the other worlds created by running rules on \k,. 
Rules specified with the keyword in. new. and. world 
create worlds that are not in any exclusion set. Exclu- 
sion sets are displayed on the browser with the sym- 
bol q . 

The Dispatcher’s Assistant 
In this section we illustrate the dispatcher’s assistant, a 
five-action-rule system that, given a set of itineraries, 
determines a compatible and legal set of driver and 
truck assignments for those itineraries. To run the 
assistant, we start by creating a world, begin, and, 
for each itinerary, making it the itinerary of a trip in 
begin. We make a list of these trips, the trip. list 
of assistant, in begin. That is, in the world 
begin, we assert the following facts: 
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The weather of Mid.Continent is fair 
The itinerary of trip.1 is 

((Indianapolis nil origin) 
(Seymour computers on) 
(Thayer computers off)) 

The itinerary of trip.2 is 
((Gary nil origin) 

(La.Harpe toys on) 
(Viola carpet on) 

The 
( 

Oregon toys off) 
Cook carpet off)) 
itinerary of trip.3 is 
Indianapolis nil origin) 
Kokomo refrigerators on) 
Warsaw refrigerators off) 
Roselawn bicycles on) 

(Gary typewriters on) 
(Attica typewriters off) 
(Bloomington bicycles off)) 

The itinerary of trip.4 is 
((Gary nil origin) 

(Oregon books on) 
(Cook newsprint on) 
(Indianapolis newsprint off) 
(Mitchell books off)) 

The trip.list of assistant is 
(trip.1 trip.2 trip.3 trip.4). 

Understanding the behavior of the assistant requires 
understanding the scheduling algorithm of the rule sys- 
tem. A rule system cycles through a three-step process 
of (1) determining which instantiations of rules are eli- 
gible to fire, (2) selecting a particular instantiated rule 
to fire, and (3) taking the actions required by that firing 
Collectively, the set of instantiated rules that are eligi- 
ble to fire at any cycle is that cycle’s conflict set. A rule 
system’s conflict-resolution algorithm decides which ele- 
ment. of the conflict set fires. The conflict-resolution 
algorithm of the rule system is based on an agenda. 
When an element of the conflict set is discovered, it 
is added to the agenda; at each step, one of the rule 
instantiations on the agenda is selected for firing. The 
rule isystem’s default agenda mechanism divides en- 
abled rule instantiations into three classes: deduction 
rules, same-world action rules, and new-world action 
rules. It fires all the rules in the earlier classes before 
any in the later; rule instantiations in each class are 
kept on a stack. Thus, the default rule system behavior 
implements depth-first search: It tries to expand the 
consequences of the latest discovery first; if that fails, 
the system focuses on earlier situations and tries their 
alternatives. The rule system provides agenda functions 
for backward chaining using breadth-first and best-first 
searches, and forward chaining using combinations of 
rule priorities and premise complexity. Users can write 
their own agenda mechanisms to implement strategies 
such as blackboards [ZO]. 

(1) None of the constraint rules matches the data, 
but the first two same-world action rules (make. candi 
date. trucks and make. candidate. arrivers) 
fire repeatedly, accumulating all trucks and drivers 
as values of the candidate. trucks and candi 
date.drivers slotsof assistant inworldbegin. 
Because all same-world rules are run before any new- 
world rules, all the trucks and drivers are noticed be- 
fore any assignment of a truck or driver to a trip. 

(2) The new-world action rules then come into 
effect. Assign. truck selects the first trip in the 
trip . 1 is t of the current world, finds a candidate 
truck, and, in a new world, (1) makes that truck the 
truck of the trip, (2) marks that trip as the trip that is 
“pending” a driver, and (3) removes that truck from the 
set of candidate trucks. (Thus, this algorithm implicitly 
enforces the constraint that a truck cannot be used in 
more than one trip.) 

(3) The constraint rules then get their turn. If they 
fail to make this world nogood (fail to find a. contradic- 
tion), assign. driver continues by findin.g the 
unique pending trip, the trip. list, and a candidate 
driver, and, once again in a new world, by (1) making 
that driver be the driver of the trip, (2) removing that 
driver from the candidate drivers, (3) resetting the 
pending trip, and (4) setting the trip . Ii s I: to the rest 
of the previous trip .I is t. Once again the constraint 
rules run. 

In cases (2) and (3), we have selected one of several 
possible candidate trucks or drivers. In fact, the rule 
system would be perfectly happy to match these rules 
against every candidate truck and driver. Since the 
agenda is a stack, however, these other elements of the 
conflict set are postponed until after the con.sequences 
of the first assignment have been pursued. The system 
stops producing children on a particular branch when 
either (I) the constraints mark a world nogood, keeping 
the action rules from pursuing its consequences; 
or (2) all the possible choices at that world have been 
exhausted. 

Figure 18 shows the additional rules for the dispatch- (4) The system, as described thus far, eventually 
er’s assistant. The system consists of five action rules in finds all legal truck and driver assignments. The fifth 
addition to the constraint rules discussed earlier. The rule stops the system after the first solution (literally by 
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assistant keeps its local search state on the canoi - 
date. trucks, candidate. drivers, t:rip. list, 
pending. trip, and problem slots of the assist - 
ant unit. At any point in the search, the candi - 
date. trucks and candidate .drivere slots con- 
tain the available but not-yet-assigned trucks and driv- 
ers, and the trip. list slot contains a list of the trips 
that have not yet been filled. We denote a trip that has 
had a truck assigned but does not yet have a driver 
as a pending. trip. We mark the problem of the 
assistant as solved when all trips have trucks and 
drivers in a consistent world. 

We invoke the rule system on these rules (and, of 
course, the constraint rules), focusing its attention on 
the world begin. This causes the following behavior: 

April 1988 Volume .31 Number 4 



Articles 

clearing the agenda). After execution the browser 
shows a tree of worlds with root begin, each world 
corresponding to a decision point in the search. Fig- 
ure 19 shows the browser after a run of the assistant. 

PROGRAMMATIC SOLUTION: 
THE DISPATCHER’S REPLACEMENT 
Solving the entire dispatching problem (creating itiner- 
aries, and assigning compatible trucks and drivers to 
them) is considerably more difficult than the previous 
task. For this task we turn to a programmatic solution: 
a Lisp program, running in the KEE system environ- 
ment, that uses KEE’s representation structures and in- 
vokes KEE system functionality as needed. We want a 
program that finds a feasible solution-one that satis- 
fies the constraints. Since this is designed as a demon- 
stration system, we also want a program that does this 
quickly. 

Our strategy is to create a set of trips with compatible 
drivers and trucks, and empty itineraries (or, more pre- 
cisely, itineraries whose sole element is that they origi- 
nate in the location of their trip’s driver and truck). 

Thus, if we have four drivers and four trucks, our set 
might include four trips, but incompatibilities between 
the available drivers and trucks might limit us to a 
smaller set. (E.g., if all the trucks are in one city and all 
the drivers in another, our maximal compatible set is 
empty.) We then consider each shipment in turn, look- 
ing for the best way to extend the itinerary of some trip 
to include it. If we are unable to find a way of extend- 
ing some itinerary within the problem constraints, we 
start the itinerary extension process over with a (ran- 
domly) different ordering of shipments. (If several such 
tries all fail, we look for a different set of compatible 
trucks and drivers, and repeat the entire process.)’ Our 
algorithm is extremely heuristic-we have sacrificed 

“Our algorithm thus combines elements of generate-and-test and depth-first 
search. This is in contrast to a pure depth-first search, where the failure to 
place a shipment suggests trying a different alternative for the previous ship- 
ment. In our algorithm a successful placement of a shipment is not revoked 
unless we are trying an entirely different solution to the problem. We chose 
this combination in the belief that there are likely to be many solutions in the 
search space, but that many parts of the space lack any solutions. Hence, we 
want a search strategy that repeatedly samples a narmw radius over a wide 
area, rather than one that does a concentrated search in one place. That is. if 
a descent from a particular spot does not work out, it is better to try some- 
thing completely different than to look too long in the same neighborhood. 

HAKE.CANDIDATE.TRIJCKS Collect possibletrucksas candidate .trucksofassistant. 
if 

(?v is in class trucks) 
then 

(a candidate.truck of assistant is ?v) 
NAKE.CANDIDATE.DRIVERS Collect possibledrivers as candidate.drivers. 

if 
(?d is in class drivers) 

then 
(a candidate.driver of assistant is ?d) 

ASSIGN. TRUCK Assign a truck to this trip. 
if 

(the trip.list of assistant is ?l) 
(equal ?first (car ?l)) 
(a candidate.truck of assistant is ?v) 

then in.new.worlU 
(delete (a candidate.truck of assistant is ?v)) 
(the truck of ?first is ?v) 
(a pending.trip of assistant is ?first) 

ASSIGN. DRIVER Assign a driver to this trip. 
if 

(the trip.list of assistant is (list.of (?first 
(a pending.trip of assistant is ?first) 
(a candidate.driver of assistant is ?d) 

then in.new.world 
(delete (the trip.list of assistant is (list.of 
(the trip.list of assistant is ?rest) 
(delete (a candidate.driver of assistant is ?d) 
(the driver of ?first is ?d) 
(delete (a pending.trip of assistant is ?first) 

STOP -ASSISTANT Stop when you’ve got a solution. 
if 

(the trip.list of assistant is NIL) 

then 
(the problem of assistant is solved) 
(lisp (stop.forward.chaining)) 

. ?rest))) 

(?first . ?rest)))) 

FIGURE 18. The Dispatcher’s Assistant Rules 
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FIGURE 19. Worlds after the Dispatcher’s Assistant 

optirnality and completeness for simplicity and speed. 
We use worlds to preserve the state of our search. 

That is, each time the search process makes a choice, 
it creates a world embodying the effect of that choice. 
(If a ,world with the same information already exists, 

we reuse it.) Since many choices violate the constraint 
rules, we run the constraint rules immediately after 
world creation. If they deduce that the just-created 
world is nogood, we consider other alternatives. We 
consider which rule produced this nogood in deciding 
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which other alternatives to consider. Worlds are data 
structures for the program: the program explicitly calls 
the system functions that create worlds, create exclu- 
sion sets, run the rule system, and examine the justifi- 
cations of facts. Figure 20 shows the browser after run- 
ning the dispatcher’s replacement. 

We wrote a program that searches for a feasible solu- 
tion. It is natural to ask why we did not produce a more 
optimal algorithm, and why we have not employed the 
algorithmic methods of operations research, such as 
linear and dynamic programming, to reach this goal. 
Optimizing algorithms are usually considerably more 
computationally expensive than simply finding feasible 
solutions, especially in irregular domains. Our goal was 
not to explore the space of numerical optimization. Of 
course, if a close-to-optimal schedule were necessary, 
one could apply optimization methods, such as ex- 
changing components of solutions and hill-climbing 
itinerary variations, to the results of one or several runs 
of the main program. Operations-research methods re- 
quire restating the problem in formal, mathematical 
terms; make assumptions about the nature of the un- 
derlying space, for example, linearity and convexity; 

and are most suited to modifying an existing solution, 
rather than creating one from scratch. We allow any 
arbitrary constraints on valid solutions (e.g., “you can’t 
ship goats and cabbage at the same time, unless you’re 
also shipping farmers”). Our symbolic approach leaves 
both the problem and its solution in a form that is 
comprehensible to the nonexpert. It is a trivial matter, 
for example, for the user to define a new concept and 
integrate constraints that use that concept (as we 
showed with the transmission example). The symbolic, 
model-based approach makes the computational trans- 
formations of the system accessible to nonwizards. A 
fertile topic for research is the integration of mathemat- 
ical optimization algorithms with symbolic problem 
expressions. 

DISCUSSION 
In this small example, we have been able to illustrate 
only a few of the potential uses of truth maintenance 
and the worlds system. The ATMS is a tool for search. 
Its primary attributes are that it preserves deductions 
across environments and that it retains the justifica- 
tions for deductions. The first of these enables reducing 

FIGURE 20. Browser after Running the Dispatcher’s Replacement 
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search-facts do not need to be rederived, even if the 
system is pursuing several different alternatives simul- 
taneously; constraints are easily expressed and auto- 
matically propagated throughout the knowledge base. 
The ATMS particularly lends itself to situations where 
the same conclusion or search state would be otherwise 
repeatedly rediscovered. The second allows the use of 
the justifications for processes such as user explanation 
(as in Figure 9), guiding search (as used by the dispatch- 
er’s replacement), and (though not illustrated) probabi- 
listic and evidential reasoning. Thus, because the justi- 
fication structures exist, it is straightforward to do 
searc:h strategies such as dependency-directed back- 
track.ing. On the other hand, the ATMS is less appropri- 
ate for situations where nonredundant information is 
never derived and old contexts are rarely continued- 
using the ATMS requires storing information that is 
never retrieved. 

The worlds system provides both a conceptual con- 
texting mechanism and a systematic access to the 
ATMS. By reifying a group of related facts into a world, 
the user acquires direct access to the consequences of 
those facts. As we have seen, worlds can be used for 
state preservation and checkpointing, incremental solu- 
tion construction, hypothetical reasoning, and reason- 
ing with incomplete information. A more exhaustive 
list would include items such as reasoning about time 
and events, and representing belief structures. Because 
the A.TMS supports the world system, derivations in 
one context automatically propagate to all other appro- 
priate contexts. The ATMS also allows the worlds sys- 
tem a straightforward implementation of the notion of 
merging contexts. 

We hope that the concentration of this article on 
examples of reasoning about scheduling under con- 
straints has not obscured our broader point-that 
choosing appropriate representations and tools vastly 
expands the set of things a computer system can con- 
veniently process. By using an integrated, symbolic un- 
derlying representation, we can easily model a complex 
domain; by employing the integrated computational 
tools of our system, we can easily reason about differ- 
ent aspects of that domain. We started with the domain 
of “helping the dispatcher of a trucking company.” We 
have shown one (of the many) way of representing the 
data and knowledge of that domain symbolically. Be- 
cause the system is symbolic, we have been spared 
most of the intellectual burden of coding and trans- 
lating between mental concepts and machine- 
understandable form. Because the system provides an 
appropriate set of representation primitives-objects, 
rules, daemons, messages, truth maintenance, and 
worlds-it was straightforward to represent the rela- 
tionships in the trucking world and reason about them. 
Because the representation is semantically clear, we 
can take the same model and use it in different ways, 
such as a state preserver, problem solver, user-interface 
basis, and simulation system. We have performed 
model-based reasoning. 
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